
Arithmetic Properties through Grammars

There are specialized algorithms1 for parsing arithmetic expressions

(written programmatically) such as

a+bc−4
x

≡ a + b*c - 4**x

But important arithmetic properties such as order of operations and

associativity can be easily expressed using context free grammars. All

non-trivial languages embed the rules of mathematics into their language

definition.2

1show_shunting.pdf
2Would you want to work in a language where 11+3 * 2 is 28?

https://cs.mcprogramming.com/static/comp/hr/0db7e81679d74d1d/show_shunting.pdf


Arithmetic Properties through Grammars

We want to avoid our “built-in” knowledge of arithmetic, so we have to focus on the

mechanics of this technique. So we’ll use ∪, ⊥ and ∩ to represent our operators.

operator precedence associativity

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

Input: 1 ∩ 2 ⊥ 3 ∪ 4



Grammar Patterns for Arithmetic Operations

Input: 1 ∩ 2 ⊥ 3 ∪ 4

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

Notice how there is a nesting or layering of the grammar non-terminals from

lowest to highest precedence operators (think of numbers as the highest precedence terms)

L → M → H →V



Grammar Patterns for Arithmetic Operations

Input: 1 ∩ 2 ⊥ 3 ∪ 4

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

We’ll use syntax directed translation in the course to perform the simplification from “raw parse tree” to

more concise expression trees as parsing takes place.

For now we want the larger raw parse tree to see the grammar mechanics in action.



Grammar Patterns for Arithmetic Operations

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

RECALL! H ⇒
+ δV π means the grammar symbol V can be derived

from non-terminal H with one or more substitutions.

Both rules 6 and 7 of this expression grammar satisfy the

H ⇒
+ δ V π assertion, since δ and π are (N ∪Σ)∗.

But only rule 7 satisfies H ⇒
+

V , since the absence of δ and π

means we can’t match (or generate) any other language terminals

from Σ into the derivation.



Higher Precedence Followed by Lower Precedence

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

Input: 1 ⊥ 2 ∩ 3 The 1 ⊥ is “captured” by rule 4, because rule 4

is the only way to incorporate the ⊥ operator into

our parse.



Higher Precedence Followed by Lower Precedence

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

Input: 1 ⊥ 2 ∩ 3 We need H ⇒
+

num to successfully parse the

initial 1. That’s not too difficult:

H → V → num



Higher Precedence Followed by Lower Precedence

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

Input: 1 ⊥ 2 ∩ 3 We need H ⇒
+

num to successfully parse the

initial 1. That’s not too difficult:

H → V → num

Now we need M ⇒
+ δ num π in order to parse

the the 2 from the input. We could use several

sequences of substitutions to accomplish this:

1. Rules 4, 7, 8

2. Rules 5, 6, 8



Higher Precedence Followed by Lower Precedence

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

Input: 1 ⊥ 2 ∩ 3
Now we need M ⇒

+ δ num π in order to parse

the the 2 from the input. We could use several

sequences of substitutions to accomplish this:

1. Rules 4, 7, 8

This would require a ⊥ after the 2 in the

input (there isn’t one).

2. Rules 5, 6, 8



Higher Precedence Followed by Lower Precedence

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

Input: 1 ⊥ 2 ∩ 3
Now we need M ⇒

+ δ num π in order to parse

the the 2 from the input. We could use several

sequences of substitutions to accomplish this:

1. Rules 4, 7, 8

2. Rules 5, 6, 8

This would require an ∪ after the 2 in the

input (there isn’t one).



Higher Precedence Followed by Lower Precedence

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

Input: 1 ⊥ 2 ∩ 3 The only way to accomplish M ⇒
+ δ num π for

the 2 in the input is using rules 5, 7 and 8 which

don’t introduce terminals absent from the input.

The remaining input, ∩ 3, must be

incorporated into the parse tree between the

root S and its child L tree created to parse the

⊥ operator.



Higher Precedence Followed by Lower Precedence

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

Input: 1 ⊥ 2 ∩ 3 With this insight, it’s not difficult to deduce the

remaining portion of the tree. We need rule 2 (it’s

the only rule with the ∩ operator) and

conveniently we can incorporate it by the

recursive property of L in rule 2.

And this is how higher-to-lower precedence can

be evaluated in an unambiguous manner when

the operator grammar is written correctly.

Let’s convice ourselves this works for

lower-to-higher precedence. . .



Lower Precedence Followed by Higher Precedence

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

The 1 ∩ is “captured” by rule 2 (it’s the only rule

with the ∩ operator in its RHS).

We need L ⇒
+

num to successfully parse the

initial 1. That’s not too difficult:

L → M → V → num

Input: 1 ∩ 2 ⊥ 3



Lower Precedence Followed by Higher Precedence

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

Now we need M ⇒
+ δ num π. Input: 1 ∩ 2 ⊥ 3



Lower Precedence Followed by Higher Precedence

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

We could use rules 5, 7 and 8; but then we must

parse the ⊥ following 2 in the input.

Could we use rules 3 and 4 for the ⊥?

No:

1. There is no S → L L production rule

2. and rule 4’s RHS H would have to

H ⇒
+ δ num π but there isn’t another num

between 2 and ⊥.

Input: 1 ∩ 2 ⊥ 3



Lower Precedence Followed by Higher Precedence

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

The only way to parse the 2 ⊥ phrase of the

input is to resolve M ⇒
+ δ num ⊥ π using rule

4.

Input: 1 ∩ 2 ⊥ 3



Lower Precedence Followed by Higher Precedence

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

The only way to parse the 2 ⊥ phrase of the

input is to resolve M ⇒
+ δ num ⊥ π using rule

4.

And rules 5, 7 and 8 allow M ⇒
+

num.

Input: 1 ∩ 2 ⊥ 3



Grammar Pattern for Operator Precedence — The Takeaway

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?

Input: 1 ∩ 2 ⊥ 3 Operator precedence is encoded into

a grammar as strict “levels” or

“layers”. A higher precedence level

must be rewritten as the RHS

non-terminal of the next lower

precedence level in order for its value

to “flow up” the expression tree into

the final result.



Grammar Pattern for Operator Associativity

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) ?

⊥ middle (M) ?

∪ highest (H) ?



Left Associative Op: 1 ∩ 2 ∩ 3

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) left

⊥ middle (M) ?

∪ highest (H) ?

There are two ∩ operators in our input

source, so we’ll have to use two

applications of rule 2 (the only rule

permitting the ∩ symbol).

The grammar does not permit L to be

below Ms in the parse tree. Why? There

are no production rules M ⇒
+ δ L π.

So there is only one way to combine

these two rewrite rules — recursing

down the LH operand:

S ⇒ L $

S ⇒ L ∩2 M2 $

S ⇒lm L1 ∩1 M1 ∩2 M2

S ⇒
+ 1 ∩1 2 ∩2 3

This left recursion bound the 2 in the

input to ∩1, which is left associative.



Right Associative Op: 1 ∪ 2 ∪ 3

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

op prec assoc

∩ lowest (L) left

⊥ middle (M) right

∪ highest (H) right

Likewise, the right recursive rules 4

and 6 means means ⊥ and ∪ are right

associative operators.

S ⇒
+

H $

S ⇒ V1 ∪1 H $

S ⇒
+
rm V1 ∪1 V2 ∪2 H

S ⇒
+ 1 ∪1 2 ∪2 3



Grammar Pattern for Parenthetical Precedence (Rule 9)

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

9 V → ( L )

op prec assoc

∩ lowest (L) left

⊥ middle (M) right

∪ high (H) right

( ·) highest (V ) none

Parenthetical overrides of precedence are straightforward to

express in a grammar.

1. Identify the non-terminal that captures the lowest precedence

expressions (L in this grammar).

2. Identify the non-terminal that captures values, variables, numbers,

and literals (in this grammar, non-terminal V ).

3. Modify the grammar to treat ( L ) as if it were a variable or value (rule

9); where ( and ) are the open and closing bracket symbols used for

grouping in the language.



Grammar Pattern for Parenthetical Precedence (Rule 9)

# Rules

1 S → L $

2 L → L ∩ M

3 L → M

4 M → H ⊥ M

5 M → H

6 H → V ∪ H

7 H → V

8 V → num

9 V → ( L )

op prec assoc

∩ lowest (L) left

⊥ middle (M) right

∪ high (H) right

( ·) highest (V ) none

Precedence: ( 1 ∩ 2 ) ∪ 3 Associativity: ( 1 ⊥ 2 ) ⊥ 3


