Arithmetic Properties through Grammars

There are specialized algorithms ${ }^{1}$ for parsing arithmetic expressions (written programmatically) such as

$$
a+b c-4^{x} \equiv \mathrm{a}+\mathrm{b}^{*} \mathrm{c}-4^{* *} \mathrm{x}
$$

But important arithmetic properties such as order of operations and associativity can be easily expressed using context free grammars. All non-trivial languages embed the rules of mathematics into their language definition. ${ }^{2}$
${ }^{1}$ show_shunting.pdf
${ }^{2}$ Would you want to work in a language where $11+3 * 2$ is $28 ?$

Arithmetic Properties through Grammars

We want to avoid our "built-in" knowledge of arithmetic, so we have to focus on the mechanics of this technique. So we'll use \cup, \perp and \cap to represent our operators.

Input: $1 \cap 2 \perp 3 \cup 4$

operator	precedence	associativity
\cap	lowest (L)	$?$
\perp	middle (M)	$?$
\cup	highest (H)	$?$

Grammar Patterns for Arithmetic Operations

Notice how there is a nesting or layering of the grammar non-terminals from lowest to highest precedence operators (think of numbers as the highest precedence terms)

$$
L \rightarrow M \rightarrow H \rightarrow V
$$

Grammar Patterns for Arithmetic Operations

Input: $1 \cap 2 \perp 3 \cup 4$

$\#$	Rules
1	$S \rightarrow L \$$
2	$L \rightarrow L \cap M$
3	$L \rightarrow M$
4	$M \rightarrow H \perp M$
5	$M \rightarrow H$
6	$H \rightarrow V \cup H$
7	$H \rightarrow V$
8	$V \rightarrow$ num

op	prec	assoc
\cap	lowest (L)	$?$
\perp	middle (M)	$?$
\cup	highest (H)	$?$

We'll use syntax directed translation in the course to perform the simplification from "raw parse tree" to more concise expression trees as parsing takes place.
For now we want the larger raw parse tree to see the grammar mechanics in action.

Grammar Patterns for Arithmetic Operations

\#	Rules	
1	$S \rightarrow L$ \$	
2	$L \rightarrow L \cap M$	
3	$L \rightarrow M$	
4	$M \rightarrow H \perp M$	
5	$M \rightarrow H$	
6	$H \rightarrow V \cup H$	
7	$H \rightarrow V$	
8	$V \rightarrow$ num	
op	prec	assoc
\cap	lowest (L)	?
\perp	middle (M)	?
\cup	highest (H)	?

RECALL! $H \Rightarrow^{+} \delta V \pi$ means the grammar symbol V can be derived from non-terminal H with one or more substitutions.

Both rules 6 and 7 of this expression grammar satisfy the $H \Rightarrow^{+} \delta V \pi$ assertion, since δ and π are $(N \cup \Sigma)^{*}$.

But only rule 7 satisfies $H \Rightarrow^{+} V$, since the absence of δ and π means we can't match (or generate) any other language terminals from Σ into the derivation.

Higher Precedence Followed by Lower Precedence

\#	Rules
1	$S \rightarrow L \$$

$2 L \rightarrow L \cap M$
$3 L \rightarrow M$
$4 \quad M \rightarrow H \perp M$
$5 M \rightarrow H$
$6 \quad H \rightarrow V \cup H$
$7 \quad H \rightarrow V$
$8 V \rightarrow$ num

op	prec	assoc
\cap	lowest (L)	$?$
\perp	middle (M)	$?$
\cup	highest (H)	$?$

Input: $1 \perp 2 \cap 3 \quad$ The $1 \perp$ is "captured" by rule 4, because rule 4 is the only way to incorporate the \perp operator into our parse.

Higher Precedence Followed by Lower Precedence

$\#$	Rules
1	$S \rightarrow L \$$
2	$L \rightarrow L \cap M$
3	$L \rightarrow M$
4	$M \rightarrow H \perp M$
5	$M \rightarrow H$
6	$H \rightarrow V \cup H$
7	$H \rightarrow V$
8	$V \rightarrow$ num

op	prec	assoc
$\cap \cap$	lowest (L)	$?$
\perp	middle (M)	$?$
\cup	highest (H)	$?$

Input: $1 \perp 2 \cap 3$

We need $H \Rightarrow^{+}$num to successfully parse the initial 1. That's not too difficult:

$$
H \rightarrow V \rightarrow \text { num }
$$

Higher Precedence Followed by Lower Precedence

$\#$	Rules
1	$S \rightarrow L \$$
2	$L \rightarrow L \cap M$
3	$L \rightarrow M$
4	$M \rightarrow H \perp M$
5	$M \rightarrow H$
6	$H \rightarrow V \cup H$
7	$H \rightarrow V$
8	$V \rightarrow$ num

op	prec	assoc
\cap	lowest (L)	$?$
\perp	middle (M)	$?$
\cup	highest (H)	$?$

Input: $1 \perp 2 \cap 3$

We need $H \Rightarrow^{+}$num to successfully parse the initial 1. That's not too difficult:

$$
H \rightarrow V \rightarrow \text { num }
$$

Now we need $M \Rightarrow^{+} \delta$ num π in order to parse the the 2 from the input. We could use several sequences of substitutions to accomplish this:

1. Rules $4,7,8$
2. Rules 5, 6, 8

Higher Precedence Followed by Lower Precedence

$\#$	Rules
1	$S \rightarrow L \$$

$2 L \rightarrow L \cap M$
$3 L \rightarrow M$
$4 M \rightarrow H \perp M$
$5 M \rightarrow H$
$6 \quad H \rightarrow V \cup H$
$7 \quad H \rightarrow V$
$8 V \rightarrow$ num

op	prec	assoc
\cap	lowest (L)	$?$
\perp	middle (M)	$?$
\cup	highest (H)	$?$

Now we need $M \Rightarrow^{+} \delta$ num π in order to parse the the 2 from the input. We could use several sequences of substitutions to accomplish this:

1. Rules 4, 7, 8

This would require a \perp after the 2 in the input (there isn't one).
2. Rules 5, 6, 8

Higher Precedence Followed by Lower Precedence

$\#$	Rules
1	$S \rightarrow L \$$

$2 L \rightarrow L \cap M$
$3 L \rightarrow M$
$4 M \rightarrow H \perp M$
$5 M \rightarrow H$
$6 \quad H \rightarrow V \cup H$
$7 H \rightarrow V$
$8 V \rightarrow$ num

op	prec	assoc
\cap	lowest (L)	$?$
\perp	middle (M)	$?$
\cup	highest (H)	$?$

$$
\text { Input: } 1 \perp 2 \cap 3
$$

Now we need $M \Rightarrow^{+} \delta$ num π in order to parse the the 2 from the input. We could use several sequences of substitutions to accomplish this:

1. Rules 4, 7, 8
2. Rules 5, 6, 8

This would require an \cup after the 2 in the input (there isn't one).

Higher Precedence Followed by Lower Precedence

\#	Rules	
$1 \quad S \rightarrow L$ \$		
2	$L \rightarrow L \cap M$	
3	$L \rightarrow M$	
4	$M \rightarrow H \perp M$	
5	$M \rightarrow H$	
6	$H \rightarrow V \cup H$	
7	$H \rightarrow V$	
8	$V \rightarrow$ num	
op	prec	assoc
\bigcirc	lowest (L)	?
\perp	middle (M)	?
\cup	highest (H)	?

Input: $1 \perp 2 \cap 3$ The only way to accomplish $M \Rightarrow^{+} \delta$ num π for the 2 in the input is using rules 5,7 and 8 which don't introduce terminals absent from the input.

The remaining input, $\cap 3$, must be incorporated into the parse tree between the root S and its child L tree created to parse the \perp operator.

Higher Precedence Followed by Lower Precedence

$\#$	Rules
1	$S \rightarrow L \$$
2	$L \rightarrow L \cap M$
3	$L \rightarrow M$
4	$M \rightarrow H \perp M$
5	$M \rightarrow H$
6	$H \rightarrow V \cup H$
7	$H \rightarrow V$
8	$V \rightarrow$ num

op	prec	assoc
\cap	lowest (L)	$?$
\perp	middle (M)	$?$
\cup	highest (H)	$?$

Input: $1 \perp 2 \cap 3$

With this insight, it's not difficult to deduce the remaining portion of the tree. We need rule 2 (it's the only rule with the \cap operator) and conveniently we can incorporate it by the recursive property of L in rule 2 .

And this is how higher-to-lower precedence can be evaluated in an unambiguous manner when the operator grammar is written correctly.

Let's convice ourselves this works for lower-to-higher precedence. . .

Lower Precedence Followed by Higher Precedence

$\#$	Rules	
1	$S \rightarrow L \$$	
2	$L \rightarrow L \cap M$	
3	$L \rightarrow M$	
4	$M \rightarrow H \perp M$	
5	$M \rightarrow H$	
6	$H \rightarrow V \cup H$	
7	$H \rightarrow V$	
8	$V \rightarrow$ num	
op	prec	
\cap	lowest (L)	
\perp	assoc	
\cup	middle (M)	
highest (H)	$?$	

The $1 \cap$ is "captured" by rule 2 (it's the only rule with the \cap operator in its RHS).

We need $L \Rightarrow^{+}$num to successfully parse the initial 1. That's not too difficult:

$$
L \rightarrow M \rightarrow V \rightarrow \text { num }
$$

Input: $1 \cap 2 \perp 3$

Lower Precedence Followed by Higher Precedence

Lower Precedence Followed by Higher Precedence

$\#$	Rules	
1	$S \rightarrow L \$$	
2	$L \rightarrow L \cap M$	
3	$L \rightarrow M$	
4	$M \rightarrow H \perp M$	
5	$M \rightarrow H$	
6	$H \rightarrow V \cup H$	
7	$H \rightarrow V$	
8	$V \rightarrow$ num	
op prec assoc \cap lowest (L) $?$ \perp middle (M) $?$ \cup highest (H) $?$		

We could use rules 5,7 and 8 ; but then we must parse the \perp following 2 in the input.
Could we use rules 3 and 4 for the \perp ?
No:

1. There is no $S \rightarrow L L$ production rule
2. and rule 4 's RHS H would have to $H \Rightarrow^{+} \delta$ num π but there isn't another num between 2 and \perp.

Input: $1 \cap 2 \perp 3$

Lower Precedence Followed by Higher Precedence

\#	Rules	
1	$S \rightarrow L$ \$	
2	$L \rightarrow L \cap M$	
3	$L \rightarrow M$	
4	$M \rightarrow H \perp M$	
5	$M \rightarrow H$	
6	$H \rightarrow V \cup H$	
7	$H \rightarrow V$	
8	$V \rightarrow$ num	
op	prec	assoc
\bigcirc	lowest (L)	?
\perp	middle (M)	?
\cup	highest (H)	?

The only way to parse the $2 \perp$ phrase of the input is to resolve $M \Rightarrow^{+} \delta$ num $\perp \pi$ using rule 4.

```
Input: 1 \cap 2 \perp 3
```


Lower Precedence Followed by Higher Precedence

\#	Rules
1	$S \rightarrow L \$$

$2 L \rightarrow L \cap M$
$3 L \rightarrow M$
$4 M \rightarrow H \perp M$
$5 M \rightarrow H$
$6 \quad H \rightarrow V \cup H$
$7 \quad H \rightarrow V$
$8 V \rightarrow$ num

op	prec	assoc
\cap	lowest (L)	$?$
\perp	middle (M)	$?$
\cup	highest (H)	$?$

The only way to parse the $2 \perp$ phrase of the input is to resolve $M \Rightarrow^{+} \delta$ num $\perp \pi$ using rule 4.

And rules 5, 7 and 8 allow $M \Rightarrow^{+}$num.

Input: $1 \cap 2 \perp 3$

Grammar Pattern for Operator Precedence - The Takeaway

$\#$	Rules
1	$S \rightarrow L \$$
2	$L \rightarrow L \cap M$
3	$L \rightarrow M$
4	$M \rightarrow H \perp M$
5	$M \rightarrow H$
6	$H \rightarrow V \cup H$
7	$H \rightarrow V$
8	$V \rightarrow$ num

op	prec	assoc
\cap	lowest (L)	$?$
\perp	middle (M)	$?$
\cup	highest (H)	$?$

Operator precedence is encoded into a grammar as strict "levels" or "layers". A higher precedence level must be rewritten as the RHS non-terminal of the next lower precedence level in order for its value to "flow up" the expression tree into the final result.

Grammar Pattern for Operator Associativity

\#	Rules	
1	$S \rightarrow L$ \$	
2	$L \rightarrow L \cap M$	
3	$L \rightarrow M$	
4	$M \rightarrow H \perp M$	
5	$M \rightarrow H$	
6	$H \rightarrow V \cup H$	
7	$H \rightarrow V$	
8	$V \rightarrow$ num	
op	prec	assoc
\bigcirc	lowest (L)	?
\perp	middle (M)	?
\cup	highest (H)	?

Left Associative Op: $1 \cap 2 \cap 3$

$\#$	Rules
1	$S \rightarrow L \$$
2	$L \rightarrow L \cap M$
3	$L \rightarrow M$
4	$M \rightarrow H \perp M$
5	$M \rightarrow H$
6	$H \rightarrow V \cup H$
7	$H \rightarrow V$
8	$V \rightarrow$ num

op	prec	assoc
\cap	lowest (L)	left
\perp	middle (M)	$?$
\cup	highest (H)	$?$

There are two \cap operators in our input source, so we'll have to use two applications of rule 2 (the only rule permitting the \cap symbol).
The grammar does not permit L to be below $M \mathrm{~s}$ in the parse tree. Why? There are no production rules $M \Rightarrow^{+} \delta L \pi$. So there is only one way to combine these two rewrite rules - recursing down the LH operand:

$$
\begin{array}{lllll}
S & \Rightarrow & L & \$ \\
S & \Rightarrow & L & \cap_{2} & M_{2}
\end{array}
$$

This left recursion bound the 2 in the input to \cap_{1}, which is left associative.

Right Associative Op: $1 \cup 2 \cup 3$

\#	Rules	
1	$S \rightarrow L$ \$	
2	$L \rightarrow L \cap M$	
3	$L \rightarrow M$	
4	$M \rightarrow H \perp M$	
5	$M \rightarrow H$	
6	$H \rightarrow V \cup H$	
7	$H \rightarrow V$	
8	$V \rightarrow$ num	
op	prec	assoc
\cap	lowest (L)	left
\perp	middle (M)	right
\cup	highest (H)	right

Likewise, the right recursive rules 4 and 6 means means \perp and \cup are right associative operators.

$$
\begin{array}{llllllll}
S & \Rightarrow^{+} & H & \$ \\
S & \Rightarrow^{+} & V_{1} & \cup_{1} & H & \$ \\
S & \Rightarrow_{r m}^{+} & V_{1} & \cup_{1} & V_{2} & \cup_{2} & H \\
S & \Rightarrow^{+} & 1 & \cup_{1} & 2 & \cup_{2} & 3
\end{array}
$$

Grammar Pattern for Parenthetical Precedence (Rule 9)

\#	Rules	
1	$S \rightarrow L$ \$	
2	$L \rightarrow L \cap M$	
3	$L \rightarrow M$	
4	$M \rightarrow H \perp M$	
5	$M \rightarrow H$	
6	$H \rightarrow V \cup H$	
7	$H \rightarrow V$	
8	$V \rightarrow$ num	
9	$V \rightarrow(L)$	
op	prec	assoc
\cap	lowest (L)	left
\perp	middle (M)	right
\cup	high (H)	right
(.)	highest (V)	none

Parenthetical overrides of precedence are straightforward to express in a grammar.

1. Identify the non-terminal that captures the lowest precedence expressions (L in this grammar).
2. Identify the non-terminal that captures values, variables, numbers, and literals (in this grammar, non-terminal V).
3. Modify the grammar to treat (L) as if it were a variable or value (rule 9); where (and) are the open and closing bracket symbols used for grouping in the language.

Grammar Pattern for Parenthetical Precedence (Rule 9)

\#	Rules	
1	$S \rightarrow L$ \$	
2	$L \rightarrow L \cap M$	
3	$L \rightarrow M$	
4	$M \rightarrow H \perp M$	
5	$M \rightarrow H$	
6	$H \rightarrow V \cup H$	
7	$H \rightarrow V$	
8	$V \rightarrow$ num	
9	$V \rightarrow(L)$	
op	prec	assoc
\cap	lowest (L)	left
\perp	middle (M)	right
\cup	high (H)	right
(.)	highest (V)	none

Precedence: $(1 \cap 2) \cup 3$

Associativity: $(1 \perp 2) \perp 3$

