Arithmetic Properties through Grammars

There are specialized algorithms¹ for parsing arithmetic expressions (written programmatically) such as

$$a+bc-4^x$$
 \equiv a + b^*c - $4^{**}x$

But important arithmetic properties such as **order of operations** and **associativity** can be easily expressed using **context free grammars**. All non-trivial languages embed the rules of mathematics into their language definition.²

¹show_shunting.pdf ²Would you want to work in a language where 11+3 * 2 is 28?

Arithmetic Properties through Grammars

We want to avoid our "built-in" knowledge of arithmetic, so we have to focus on the mechanics of this technique. So we'll use \cup , \perp and \cap to represent our operators.

Input: $1 \cap 2 \perp 3 \cup 4$

operator	precedence	associativity
\cap	lowest (L)	?
\perp	middle (M)	?
U	highest (H)	?

Grammar Patterns for Arithmetic Operations

Input: $1 \cap 2 \perp 3 \cup 4$

Notice how there is a **nesting** or **layering** of the grammar non-terminals from **lowest to highest precedence operators** (think of numbers as the highest precedence terms)

 $L \to M \to H \to V$

Grammar Patterns for Arithmetic Operations

Input: $1 \cap 2 \perp 3 \cup 4$

We'll use **syntax directed translation** in the course to perform the simplification from "raw parse tree" to more concise **expression trees** as parsing takes place.

For now we want the larger raw parse tree to see the grammar mechanics in action.

Grammar Patterns for Arithmetic Operations

#	Rules
1	$S \rightarrow L$ \$
2	$L \rightarrow L \cap M$
3	L ightarrow M
4	M ightarrow H ot M
5	M ightarrowH
e	$\boldsymbol{U} \to \boldsymbol{V} \cup \boldsymbol{U}$

- $\begin{array}{ccc} 6 & H \to V \cup H \\ 7 & H \to V \end{array}$
- 8 $V \rightarrow num$

ор	prec	assoc
\cap	lowest (L)	?
\perp	middle (M)	?
U	highest (H)	?

RECALL! $H \Rightarrow^+ \delta V \pi$ means the grammar symbol *V* can be **derived** from non-terminal *H* with one or more substitutions.

Both rules 6 and 7 of this expression grammar satisfy the $H \Rightarrow^+ \delta V \pi$ assertion, since δ and π are $(N \cup \Sigma)^*$.

But only rule 7 satisfies $H \Rightarrow^+ V$, since the absence of δ and π means we can't match (or generate) any other language terminals from Σ into the derivation.

- Rules #
- $S \rightarrow L$ \$ 1
- $L \to L \cap M$ 2
- 3 $L \rightarrow M$
- 4 $M \rightarrow H \perp M$
- 5 $M \rightarrow H$
- 6 $H \rightarrow V \cup H$
- 7 $H \rightarrow V$
- 8 $V \rightarrow num$

ор	prec	assoc
\cap	lowest (L)	?
\perp	middle (M)	?
U	highest (H)	?

Input:
$$1 \perp 2 \cap 3$$

S

L

М

М

Η

- The $1 \perp$ is "captured" by rule 4, because rule 4 is the only way to incorporate the \perp operator into our parse.

#	Rules		Input: $1 \perp 2$
1	$S \rightarrow L$ \$		input. $1 \perp 2$
2	$L \to L \cap L$	Μ	
3	$L \rightarrow M$		s
4	M ightarrow H .	$\bot M$	
5	$M \rightarrow H$		L
6	$H \rightarrow V \cup$	H	\checkmark
7	$H \rightarrow V$		
8	$V \rightarrow num$	ı	M
ор	prec	assoc	H CH
\cap	lowest (L)	?	
\perp	middle (M)	?	
U	highest (H)	?	
			' (V) (

Μ

 $2 \cap 3$ We need $H \Rightarrow^+ num$ to successfully parse the initial 1. That's not too difficult:

$$H \rightarrow V \rightarrow num$$

#	Rules		Input:	1 1
1	$S \rightarrow L$ \$		input.	1
2	$L \to L \cap L$	Μ	(
3	$L \rightarrow M$		C	s
4	M ightarrow H floor	$_M$		
5	M ightarrow H		(L
6	$H \rightarrow V \cup$	H		\top
7	$H \rightarrow V$			
8	$V \rightarrow num$!	>	м
	P *20			
ор	prec	assoc	Н	
\cap	lowest (L)	?		
\perp	middle (M)	?		
U	highest (H)	?		

 $2 \cap 3$ Μ

We need $H \Rightarrow^+ num$ to successfully parse the initial 1. That's not too difficult:

$$H \rightarrow V \rightarrow num$$

Now we need $M \Rightarrow^+ \delta num \pi$ in order to parse the the 2 from the input. We could use several sequences of substitutions to accomplish this:

- 1. Rules 4, 7, 8
- 2. Rules 5, 6, 8

#	Rules		
1	$S \rightarrow L$ \$		
2	$L \to L \cap L$	Μ	
3	$L \rightarrow M$		
4	M ightarrow H .	$\bot M$	
5	$M \rightarrow H$		
6	$H \rightarrow V \cup$	H	
7	$H \rightarrow V$		
8	$V \rightarrow num$	ı	
ор	prec	assoc	
\cap	lowest (L)	?	
\perp	middle (M)	?	
U	highest (H)	?	

Now we need $M \Rightarrow^+ \delta num \pi$ in order to parse the the 2 from the input. We could use several sequences of substitutions to accomplish this:

- Rules 4, 7, 8 This would require a ⊥ after the 2 in the input (there isn't one).
- 2. Rules 5, 6, 8

Rules		
$S \rightarrow L$ \$		
$L \to L \cap L$	Μ	
$L \rightarrow M$		
$M \to H ig arphi$	$_M$	
$M \rightarrow H$		
$H \rightarrow V \cup$	H_{-}	
$H \rightarrow V$		
$V \rightarrow num$!	
prec	assoc	
prec lowest (L)	assoc ?	
	assoc ? ?	
	$S \rightarrow L \$$ $L \rightarrow L \cap L$ $L \rightarrow M$ $M \rightarrow H \sqcup$ $H \rightarrow V \cup$ $H \rightarrow V$	$S \to L \$$ $L \to L \cap M$ $L \to M$ $M \to H \perp M$ $M \to H$ $H \to V \cup H$

Duloc

Input:
$$1 \perp 2 \cap 3$$

м

S

H

Now we need $M \Rightarrow^+ \delta num \pi$ in order to parse the the 2 from the input. We could use several sequences of substitutions to accomplish this:

- 1. Rules 4, 7, 8
- 2. Rules 5, 6, 8

This would require an \cup after the 2 in the input (there isn't one).

V

#	Rules		Input: $1 \perp 2 \cap 3$
1	$S \rightarrow L$ \$		input. $1 \pm 2 + 3$
2	$L \to L \cap L$	Μ	S
3	$L \rightarrow M$		
4	$M \to H \bot$	$\bot M$	
5	$M \rightarrow H$		
6	$H \rightarrow V \cup$	H	
7	$H \rightarrow V$		M
8	$V \rightarrow num$	ı	
			(н) (
ор	prec	assoc	\uparrow \uparrow \uparrow
\cap	lowest (L)	?	
\perp	middle (M)	?	V H
U	highest (H)	?	

The only way to accomplish $M \Rightarrow^+ \delta num \pi$ for the 2 in the input is using rules 5, 7 and 8 which don't introduce terminals absent from the input.

The remaining input, \cap 3, **must be** incorporated into the parse tree between the **root** S and its child L tree created to parse the \perp operator.

Rules

$\begin{array}{cccc} 1 & S \to L \\ 2 & L \to L \cap M \end{array}$

- 3 $L \rightarrow M$
- $4 \quad M \to H \perp M$
- 5 $M \rightarrow H$
- $6 \quad H \rightarrow V \cup H$
- 7 $H \rightarrow V$
- 8 $V \rightarrow num$

ор	prec	assoc
\cap	lowest (L)	?
\perp	middle (M)	?
U	highest (H)	?

Input: $1 \perp 2 \cap 3$

\$ 0 M М н \mathbf{V} v н

With this insight, it's not difficult to deduce the remaining portion of the tree. We need rule 2 (it's the only rule with the \cap operator) and conveniently we can incorporate it by the recursive property of *L* in rule 2.

And this is how higher-to-lower precedence can be evaluated in an **unambiguous** manner when the operator grammar is written correctly.

Let's convice ourselves this works for lower-to-higher precedence...

#	Ru	les		
4	a		Ŧ	Φ

- $1 \quad S \to L \$$ $2 \quad L \to L \cap M$
- $2 \quad L \to L \sqcup M$
- 3 $L \rightarrow M$
- 4 $M \rightarrow H \perp M$
- 5 $M \rightarrow H$
- $6 \quad H \to V \cup H$
- 7 $H \rightarrow V$
- 8 $V \rightarrow num$

ор	prec	assoc
\cap	lowest (L)	?
\perp	middle (M)	?
U	highest (H)	?

The $1\ \cap$ is "captured" by rule 2 (it's the only rule with the \cap operator in its RHS).

We need $L \Rightarrow^+ num$ to successfully parse the initial 1. That's not too difficult:

 $L \rightarrow M \rightarrow V \rightarrow num$

#	Rules	
1	$S \rightarrow L$ \$	
2	$L \rightarrow L \cap L$	M
3	$L \rightarrow M$	
4	$M \to H \bot$	$\bot M$
5	$M \rightarrow H$	
6	$H \rightarrow V \cup$	H
7	$H \rightarrow V$	
8	$V \rightarrow num$	ı
ор	prec	assoc

lowest (L)

middle (M)

highest (H)

?

?

$\cup H$	Could we use rules 3 and 4 for the $\bot ?$
т	No:

1. There is no $S \rightarrow LL$ production rule

parse the \perp following 2 in the input.

We could use rules 5, 7 and 8; but then we must

2. and rule 4's RHS *H* would have to $H \Rightarrow^+ \delta num \pi$ but there isn't another *num* between 2 and \perp . Input: $1 \cap 2 \perp 3$

Rules

- 1 $S \rightarrow L$ \$
- 2 $L \rightarrow L \cap M$
- 3 $L \rightarrow M$
- $4 \quad M \to H \perp M$
- 5 $M \rightarrow H$

4.

- $\mathsf{6} \quad H \ \rightarrow \ V \cup H$
- 7 $H \rightarrow V$
- 8 $V \rightarrow num$

ор	prec	assoc
\cap	lowest (L)	?
\perp	middle (M)	?
U	highest (H)	?

The only way to parse the 2 \perp phrase of the input is to resolve $M \Rightarrow^+ \delta num \perp \pi$ using rule

Rules

- $\begin{array}{ccc} 2 & L \rightarrow L + M \\ 3 & L \rightarrow M \end{array}$
 - $L \to M$ $M \to H \perp M$
- $\begin{array}{ccc} 4 & M \rightarrow H \\ 5 & M \rightarrow H \end{array}$
- $6 \quad H \to V \cup H$
- 7 $H \rightarrow V$
- 8 $V \rightarrow num$

ор	prec	assoc
\cap	lowest (L)	?
\perp	middle (M)	?
U	highest (H)	?

The only way to parse the 2 \perp phrase of the input is to resolve $M \Rightarrow^+ \delta num \perp \pi$ using rule 4.

```
And rules 5, 7 and 8 allow M \Rightarrow^+ num.
```


Grammar Pattern for Operator Precedence — The Takeaway

#	nules
1	$S \rightarrow L$ \$
2	$L \rightarrow L \cap M$
3	L ightarrow M
4	M ightarrowHotM
5	M ightarrowH
6	$H ightarrow V \cup H$
7	$H \rightarrow V$
0	V >

Dulas

8 $V \rightarrow num$

ор	prec	assoc
\cap	lowest (L)	?
\perp	middle (M)	?
U	highest (H)	?

Operator precedence is encoded into a grammar as strict "levels" or "layers". A higher precedence level **must be rewritten** as the RHS non-terminal of the next lower precedence level in order for its value to "flow up" the expression tree into the final result.

Grammar Pattern for Operator Associativity

Left Associative Op: $1 \cap 2 \cap 3$

#

2

3

4

5

6

7

8

ор

There are two \cap operators in our input source, so we'll have to use two applications of rule 2 (the only rule permitting the \cap symbol).

The grammar does not permit *L* to be below *M*s in the parse tree. Why? There are no production rules $M \Rightarrow^+ \delta L \pi$. So there is only one way to combine these two rewrite rules — recursing down the LH operand:

This left recursion bound the 2 in the input to \cap_1 , which is **left associative**.

Right Associative Op: $1 \cup 2 \cup 3$

Rules # $S \rightarrow L$ \$ 1 $L \rightarrow L \cap M$ 2 3 $L \rightarrow M$ $M \rightarrow H \perp M$ 4 5 $M \rightarrow H$ $H \rightarrow V \cup H$ 6 7 $H \rightarrow V$ 8 $V \rightarrow num$

ор	prec	assoc
\cap	lowest (L)	left
\perp	middle (M)	right
U	highest (H)	right

Likewise, the right recursive rules 4 and 6 means means \perp and \cup are **right** associative operators.

£.

Grammar Pattern for Parenthetical Precedence (Rule 9)

Rules

- 1 $S \rightarrow L$ \$
- 2 $L \rightarrow L \cap M$
- $L \to M$
- $4 \quad M \to H \perp M$
- 5 $M \rightarrow H$
- $6 \quad H \to V \cup H$
- 7 $H \rightarrow V$
- 8 $V \rightarrow num$
- 9 $V \rightarrow (L)$

ор	prec	assoc
\cap	lowest (L)	left
\perp	middle (M)	right
U	high (H)	right
(\cdot)	highest (V)	none

Parenthetical overrides of precedence are straightforward to express in a grammar.

- 1. Identify the **non-terminal** that captures the lowest precedence expressions (*L* in this grammar).
- 2. Identify the **non-terminal** that captures values, variables, numbers, and literals (in this grammar, non-terminal *V*).
- 3. Modify the grammar to treat (L) as if it were a variable or value (rule 9); where (and) are the open and closing bracket symbols used for grouping in the language.

Grammar Pattern for Parenthetical Precedence (Rule 9)

Precedence: ($1 \cap 2$) $\cup 3$ Associativity: ($1 \perp 2$) $\perp 3$

Rules

- 1 $S \rightarrow L$ \$
- 2 $L \rightarrow L \cap M$
- 3 $L \rightarrow M$
- $4 \quad M \to H \perp M$
- 5 $M \rightarrow H$
- $6 \quad H \rightarrow V \cup H$
- 7 $H \rightarrow V$
- 8 $V \rightarrow num$
- 9 $V \rightarrow (L)$

ор	prec	assoc
\cap	lowest (L)	left
\perp	middle (M)	right
U	high (H)	right
(\cdot)	highest (V)	none

