```
procedure firstSet( X , set T )
X, }\beta\mathrm{ is valid sequence of grammar elements
(part of a rewrite's RHS), and T is an empty set on the
first call of procedure.
returns the set of terminals {t\in\mp@subsup{\Sigma}{$}{}|X\beta=>t\pi},
    and an updated set T
Recall notationally: \Sigma$ = \Sigma+{$}; X 
P is the set of production rules of the grammar.
```

```
if ( }X\in\mp@subsup{\Sigma}{$}{\prime})\mathrm{ then (
```

if ( }X\in\mp@subsup{\Sigma}{\$}{\prime})\mathrm{ then (
return {X},T
return {X},T
)
)

# F for the First Set

let F be a set
if ( }X\mathrm{ not in T ) then (
add X to set T
foreach ( }p\inP\mathrm{ with X on LHS of p ) do (
let R}\leftarrow\mathrm{ RHS of p
\# I for ignorable
G,I\leftarrow firstSet (R,T)
F\leftarrowF\bigcupG
)
)
if( derivesToLambda( X ) is true AND | | > >0 ) then (
G,I\leftarrow firstSet ( }\beta,T
F\leftarrowF\bigcupG
)
return $F, T$

```
```

